Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 458: 131930, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37390689

RESUMO

The biosorption and recovery of ionic gadolinium (Gd) from contaminated water by the free-floating duckweed Lemna gibba was studied. The highest non-toxic concentration range was determined as (6.7 mg L-1). The concentration of Gd in the medium and in the plant biomass was monitored and a mass balance was established. Tissue Gd concentration of Lemna increased with increasing Gd concentration of the medium. The bioconcentration factor was up to 1134 and in nontoxic concentrations up to 2.5 g kg-1 Gd tissue concentration was reached. Lemna ash contained 23.2 g Gd kg-1. Gd removal efficiency from the medium was 95%, however, only 17-37% of the initial Gd content of the medium accumulated in Lemna biomass, an average of 5% remained in the water, and 60-79% was calculated as a precipitate. Gadolinium-exposed Lemna plants released ionic Gd into the nutrient solution when they were transferred to a Gd-free medium. The experimental results revealed that in constructed wetlands, L. gibba is able to remove ionic Gd from the water and can be suitable for bioremediation and recovery purposes.


Assuntos
Araceae , Poluentes Químicos da Água , Poluentes Químicos da Água/análise , Biodegradação Ambiental , Gadolínio/farmacologia , Biomassa
2.
Front Plant Sci ; 13: 963579, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36388490

RESUMO

Free-floating and rootless submerged macrophytes are typical, mutually exclusive vegetation types that can alternatively dominate in stagnant and slow flowing inland water bodies. A dominance of free-floating plants has been associated with a lower number of aquatic ecosystem services and can be explained by shading of rootless submerged macrophytes. Vice versa, high pH and competition for several nutrients have been proposed to explain the dominance of rootless submerged macrophytes. Here, we performed co-culture experiments to disentangle the influence of limitation by different nutrients, by pH effects and by allelopathy in sustaining the dominance of rootless submerged macrophytes. Specifically, we compared the effects of nitrogen (N), phosphorus (P), iron (Fe) and manganese (Mn) deficiencies and an increased pH from 7 to 10 in reducing the growth of free-floating Lemna gibba by the rootless Ceratophyllum demersum. These macrophyte species are among the most common in highly eutrophic, temperate water bodies and known to mutually exclude each other. After co-culture experiments, additions of nutrients and pH neutralisation removed the growth inhibition of free-floating plants. Among the experimentally tested factors significantly inhibiting the growth of L. gibba, an increase in pH had the strongest effect, followed by depletion of P, N and Fe. Additional field monitoring data revealed that in water bodies dominated by C. demersum, orthophosphate concentrations were usually sufficient for optimal growth of free-floating plants. However, pH was high and dissolved inorganic N concentrations far below levels required for optimal growth. Low N concentrations and alkaline pH generated by dense C. demersum stands are thus key factors sustaining the stable dominance of rootless submerged vegetation against free-floating plants. Consequently, N loading from e.g. agricultural runoff, groundwater or stormwater is assumed to trigger regime shifts to a dominance of free-floating plants and associated losses in ecosystem services.

3.
Ecol Evol ; 12(9): e9306, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36177112

RESUMO

The synergy between climate change, eutrophication, and biological invasion is threatening for native submerged plants in many ways. The response of submerged plants to these changes is a key factor that determines the outcome of biological invasion. In order to explain the invasion successes, we investigated the combined effects of climate change and eutrophication-related environmental factors (temperature, light, and nutrients) on the trait responses of a native (Myriophyllum spicatum) and an alien (Cabomba caroliniana) submerged species. In a factorial design, we cultivated the two species in aquaria containing low (0.5 mg N L-1, 0.05 mg P L-1) and high (2 mg N L-1, 0.2 mg P L-1) nutrient concentrations, incubated at four light intensities (average 25, 67, 230, and 295 µmol m-2 s-1 PAR photon flux density) under two temperature levels (21.5 and 27.5 ± 0.5°C). We used four invasion-related functional traits (relative growth rate (RGR), specific leaf area (SLA), leaf dry matter content (LDMC), and nitrogen to carbon ratio (N:C molar ratio)) to measure the environmental response of the species. We calculated plasticity indexes to express the trait differences between species. Cabomba caroliniana showed significantly higher RGR and SLA than M. spicatum especially under low light intensity indicating that Cabomba is much more shade tolerant. Elevated temperature resulted in higher SLA and reduced LDMC for C. caroliniana indicating that Cabomba may have higher invasion success. Myriophyllum showed higher LDMC than C. caroliniana. Chemical analyses of the plant tissue revealed that although M. spicatum showed significantly higher N:C molar ratio, nonetheless, the daily nitrogen uptake of C. caroliniana was more than three times faster than that of M. spicatum. Results supported the idea that due to its higher shade tolerance and nitrogen uptake capacity, Cabomba likely has greater invasion success with increasing temperature combined with low light levels.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...